SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Injection Molding

Real-Time Process Optimization With In-Mold Sensors and Machine Learning
Dr. Alexander Chaloupka, May 2023

Plastic manufacturing can be unpredictable. Deviations in material batches, moisture content, machine calibration, among other variables, lead to issues in manufacturing quality and final part properties. This webinar will introduce how dielectric analysis (DEA) sensors be used to directly measure material behavior in-mold. New technology has been developed to combine dielectric analysis with machine learning and material models, allowing for dynamic adjustments to machine settings, removing uncertainty from your process, and optimizing cycle times. The material covered will include:

  • Fundamentals of dielectric analysis and applications for plastic processing
  • How dielectric analysis and machine learning can be combined for dynamic process optimization
  • Case studies demonstrating how dielectric analysis is being used in industries ranging from automotive composites to electronic encapsulation

Fiber-Fiber Interaction in DEM Analysis for Fiber Orientation
Narendra Singh, Ravisankar Mayavaram, Dilipkumar Devpalli, March 2024

Study on fiber-fiber interaction in short fiber reinforced injection molded parts for better material property prediction.

Cycle Time Optimization Through External Cooling
Stephan Kartelmeyer, Finn Welling, Prof. Dr.-Ing. Jaroschek, March 2024

Research on reducing cycle times in rapid tooling via external cooling of mold inserts.

Optimizing Cavity Pressure with Hot Runner Designs
Matthias Scholl, Christian Hopmann, March 2024

Experimental and modeling study on improving cavity pressure regulation using optimized hot runner valve pins.

Thermoplastic Foam Injection Molding for Lightweight Structures
Frank Ehrig, Gion Barandun, Curdin Wick, March 2024

Combining thermoplastic foam molding and continuous fiber tapes for lightweight structural components.

Effect of Melt Viscosity on Residual Fiber Length in LFTs
Masatoshi Kobayashi, Masato Takahashi, Tsutomu Nikami, March 2024

Study of the effect of melt viscosity on fiber length distribution in polyamide 6 composites.

Introduction to Plastics
Jeff Jansen, January 2024

Plastics are the most versatile materials ever invented, and have become a universal material, used for everything from water bottles to wings on combat aircraft to implanted artificial joints. Thermoplastic materials display properties that are unique when compared to other materials and have contributed greatly to the quality of our everyday life. At this moment, you are almost certain to be touching plastic. Yet, while plastics play such an important role, we do not always understand the fundamental concepts of their production, compounding, end properties, and use. If words such as polymer, thermoplastic, creep, amorphous, and modulus are outside your normal vocabulary, this presentation is for you. At the conclusion of this presentation, you will understand:

  • How polymers build molecular weight through polymerization and its importance in the performance of thermoplastics.
  • The role that polymer structure plays in shaping the key characteristics of plastics.
  • How crystallinity the plays an important role in determining the properties of plastics.
  • The essentials of viscoelasticity.
The usefulness of thermoplastics is attributed to the fact that they provide a wide range of properties and can be changed into products by relatively simple and inexpensive fabrication means. In order to take full advantage of these materials, it is important to have a clear understanding of their composition and elementary properties.

Build A Strong Business Case for Bringing 3D Printing Into Your Plastic Injection Operations
Arnaud Divialle, June 2023

3D printing holds great promise for manufacturing. And yet, deployment and adoption has lagged. One reason for this appears to be that building the business case for 3D printing is a major roadblock for many companies. Join us to find out why building your business case is critical to successfully using 3D printing in plastic injection, and to learn how to build robust justifications for investing in 3D printing by:

  • Identifying which parts would benefit from 3D printing, and how
  • Estimating the reduction in cycle time achievable with 3D-printed inserts/li>
  • Reducing uncertainty about the benefits of 3D printing/li>
In this webinar, we discuss the challenges of adopting 3D printing in the plastic injection industry and share our in-depth knowledge of powerful solutions you can use to make the best investment decisions. You'll learn:
  • How front-end simulation can help you make better decisions faster
  • What to consider in your decisions
  • Strategies for reducing the risk of adopting new technologies

Large Thermoforming Molds Twice as Fast for Half the Cost
Bradley Mount, Clay Guillory, Dave Rheinheimer, Nino Pecina, April 2023

To address growing supply chain pressures, manufacturers are turning to Additive Manufacturing (AM) to create quality, cost-efficient products faster. Plastic thermoforming companies like Duo Form have discovered how to leverage large-format extrusion 3D printing using low-cost plastic pellets to gain a competitive edge. They are producing medium-to-large-sized thermoforming molds in less than half the time, and at a fraction of the cost compared to traditional mold-making methods.

Join engineering and business experts from 3D Systems and Duo Form as we dive deep into the integration that has made pellet-extrusion AM so beneficial for Duo Form, and how you can reap the same benefits in your own thermoforming processes.

In this webinar, you will learn about:

  • How pellet extrusion 3D printing enables up to 10X faster mold print times, with up to 10X savings on material costs
  • Duo Form specific case studies and ROI examples
  • Best practices that improve AM production and mold performance such as: how to print porous molds, using infill settings for improved vacuum pulls, and more!
  • How to select the right AM solution, including options for additive-subtractive hybrid systems

A Novel Approach to Control Switchover Between Injection and Holding Phase for a Hydraulic Injection Moulding Machine
Rasmus A. Hertz, Jesper K. Christensen, Ole Therkelsen, Søren Kristiansen, Christian-Emil Helver, Frederik A. Hansson, Lasse Schmidt, March 2023
Simulating and Validating the Low Constant Pressure Molding Process, iMFLUX
Jay Shoemaker, Riley Browne, Mason Houtteman, March 2023

A new injection molding processing strategy called iMFLUX is becoming popular. iMFLUX is a low constant pressure process for filling and packing the part. Commercial injection molding simulation software traditionally is not designed for this process. However, you can simulate it. This paper will show how to set up and run simulations using currently available simulation software. Validation work of simulation work is also discussed.

Challenges in Precision Molding and Emerging Micro Advancements
Donna Bibber, March 2023

Today, the need for micro molding applications is rapidly increasing, in part due to advancements in technology and scientific research. With medical devices becoming less invasive, and portable/wearable health devices gaining popularity, the need for small and highly precise components and parts has increased. Micro molding can be used to manufacture parts for these devices meeting the need for fine features, thin walls, micro holes, tight tolerances and scalability to high volume production. However, there are many challenges in molding micro parts or molding micro features and/or tight tolerances on small parts. This presentation will review some of the challenges involved in molding micro parts, sharps, micro holes, thin walls and micro automated assemblies and solutions for overcoming these challenges including resin selection and precision tooling considerations. In addition, we will discuss emerging applications where these micro advancements are required, including specialty surfaces.

Improved Injection Molding Warp Predictions by Characterization of Material Properties Using Measured Shrinkage Molding Data
Franco S Costa, Alexander Bakharev, Zhongshuang Yuan, Jin Wang, March 2023

A key objective of process simulation of thermoplastic injection molding is the accurate prediction of the final part shape after the part is ejected from the mold. Deviation of the molded part shape from the intended design is known as warp. In this research, we present a method to improve the accuracy of warp prediction by using calibrated mechanical properties. The calibrated mechanical properties can be the modulus, Poisson’s Ratio and Coefficient of Thermal Expansion. The calibration is achieved using a database of measured shrinkage molding data from a series of moldings of standardized test plaques having a variety of molding thicknesses and using a variety of process condition settings (packing pressure, melt temperature and injection velocity). Presented in this work are comparisons to actual molding data of final part shape predictions for both unfilled polymers and fiber reinforced polymer composites performed both with and without the shrinkage test calibrated mechanical properties. This includes a thin-walled part for which a post-molding buckling response is correctly predicted when the calibrated material properties are used.

Compensation of Batch Fluctuations of Post-Consumer Recyclate in Injection Molding by Phase-Unifying Process Control
Katharina Hornberg, Christian Hopmann, Marko Vukovic, Sebastian Stemmler, Dirk Abel, March 2023

The processing of post-consumer recyclates (PCR) causes fluctuating process conditions due to a varying composition and history of material batches. The fluctuations in part quality grow with increasing recyclate use and lead to reduced mechanical and optical part properties. We developed a phase-unifying process control approach, which combines injection and holding pressure phase by eliminating the switchover point. The approach realizes a given cavity pressure curve by adjusting the screw velocity in real-time. For calculation of the cavity pressure reference, batch differences have to be detected during the process. The objective of presented research is an evaluation of batch differences by material characterization and process analysis to account for economic online process control. First, we characterized five different PCR batches to identify the material properties and find fast and cost-effective methods to initialize the controller setting, as controller parameters depend on the processed material. Afterwards, we performed injection molding trials for different process settings to detect batch changes in quality data and process data. The material characterization showed that the melt flow rate and anorganic content have the highest correlation to part weight. Furthermore, batch changes have been identified most effectively by characteristics of the pressure curves, which makes an online determination of material batch changes possible.

Injection Velocity Versus Pressure Control During Filling
Bradley Johnson, March 2023

Capability studies were performed which compared the use of pressure-controlled and velocity-controlled filling of injection molded parts with plastic that had varying viscosity. A nozzle pressure transducer was used to control the pressure-controlled filling, as well as the pack and hold for both processes. Several methods of transferring from filling to packing were also compared which included screw position, cavity pressure sensors, and in-mold melt switches. This presentation will summarize the results of these studies.

Identification and Compensation of Part Warpage in Injection Molding Using On-Cavity Thermally Sprayed Heating Coatings
Christian Hopmann, Cemi Emre Kahve, Daniel Colin Fritsche, Theresa Kassel, Kirsten Bobzin, Hendrik Heinemann, Marvin Erck, Carsten Vogels, March 2023

Dimensional accuracy is – to this day – a challenging key quality aspect for manufactured parts using primary shaping processes. Many high-precision parts undergo multiple correction loops during the mold-making process to meet the required geometric tolerances. Each iteration not only increases production costs, but also requires additional human and environmental resources. Dimensional inaccuracies are caused by the process-based part deformation, a superposition of the phenomena shrinkage and warpage. The mechanisms for shrinkage and warpage a re strongly rela ted to the dependence of a polymer’s specific volume on pressure, and temperature (pvT-behavior). Shrinkage is inevitable, since it is caused by the continuous decrease in melt temperature and the inherent crystallization process during solidification. Warpage results due to local and timedependent variations of the melt temperature, cooling rate, and pressure and thus the local specific volume. These variations cause inner stress distributions that ultimately cause the part to warp. In order to reduce part warpage, the volumetric shrinkage must be homogenized across the part, which can be realized by manipulating the part's temperature locally and time dependent. In this work, the warpage of a box-shaped geometry with the material Polyoxymethylene (POM) is aimed to be reduced using a novel on-cavity thermally sprayed heating coating system. Two different heating coating systems are implemented and tested using commercial simulation and 3D-inspection software. For each system, the power level was varied, and the warpage was evaluated. In total, a warpage reduction of factor eight has been achieved using the heating coating.

The Universal Process: A Novel Approach to Enable Injection Molded Part(s) to Generate a Singular Process Across Multiple Machines and Materials
Lexington Peterson, Brandon Birchmeier, March 2023

The macro-issues the plastics industry is trying to resolve today pertain to sustainability, supply chain shortages, and the lack of skilled labor. Within the injection molding sector, manufacturers typically perform a full validation when a mold is moved to a different injection molding machine (IMM) or there is a material change. These full validations are labor-intensive, expensive, and not sustainable. Moreover, these methods may or may not utilize scientific molding principles. There has been a demand for a standard “part process” development method to transfer a mold between IMMs that is more efficient and can embrace variation in resins. iMFLUX’s Auto-Viscosity Adjust (AVA) technology has made doing so easier with its low, constant pressure injection molding process. This adaptive technology enables the molding process to automatically adjust parameters in real-time around parts’ response. This research focuses on developing a regenerative part process with low, constant pressure that is independent of resin and machine. Using AVA and cavity pressure sensors, two molds’ processes were transferred to another capable press with the original process, no user adjustments, and parts were studied for visual and dimensional integrity. It was determined that iMFLUX can automatically regenerate optimized part processes in different IMMs deemed capable with negligible part variation as seen from the visual and dimensional results. This is the first time an intelligent controller can autonomously redevelop and validate a part process to mold parts within spec despite varying IMMs and resins.

Thick Foam Molding for Sustainable Engineering Applications
Alicyn Rhoades, Ph.D., March 2023

Glass-filled engineering polymers are a staple in the automotive, aerospace, and medical industries. However, understanding the influence of glass fibers on the crystallization behaviors of these polymers is not trivial - especially at heating and cooling rates encountered during melt processing. Sample preparation plays an important role in the success of thermal analysis. For conventional differential scanning calorimetry (DSC) characterization, larger sample size is often used for composites than neat resin to mitigate the impact of possible filler inhomogeneity. Because the sample is quite small (thickness of less than 20 µm and a mass of less than 1000 ng) for fast scanning calorimetry (FSC), the potential impact of sample preparation on data reliability is very significant. In this study we explore and quantify the effect of sample preparation for DSC and FSC on crystallization kinetics in a wide temperature range using three grades, Poly(ether ether ketone) (PEEK), and its glass-fiber-filled composites (PEEK with 15 wt% and 30 wt% glass fiber) were studied, and X-ray computed tomography (XCT) with an ultrahigh-resolution was performed to reconstruct the interior structure of the composite pellets. When the sample thicknesses is less than 50 µm, the PEEK sample sliced perpendicular to the fiber flow direction have good filler homogeneity and always have a lower coefficient of variation than pellets sliced along the fiber flow direction. Furthermore, the data collected by both FSC and DSC were fitted and showed that FSC and DSC analysis can be reasonably used to predict the kinetics of composite materials.

Gas-Assisted Push-Pull: A Novel Technology to Significantly Increase Weld Lines Mechanical Performance
Marco Sorgato, Ph.D., March 2023

In injection molding of fiber-reinforced thermoplastics, in the presence of physical obstacles, such as cores, or for geometries that require multiple gates, weld lines develop where flow fronts rejoin. Regions affected by the presence of weld surfaces show worse mechanical properties. In fact, these areas are characterized by incomplete welding between the flow fronts and the presence of undesirable inclusions and porosity. In addition, due to the fountain-like flow in cavities, fibers on the weld line are unfavorably arranged and are unable to reorient themselves in the flow direction. If the incident flow fronts exhibit no pressure gradient during the defect formation and the holding phase, the morphology of the weld surface remains unchanged until the end of the process. By inducing a pressure imbalance after the formation of the weld line, on the other hand, it is possible to promote the interpenetration of one front into the other and significantly modify the local morphology. A dynamic packing stage during the first part of the holding phase therefore allows for improved matrix interdiffusion at the interface and fibers reorientation in the flow direction. Gas Assisted Injection Molding (GAPP) is a novel technology that allows for the dynamic packing of weld lines using only a single injection unit. Thanks to miniaturized gas injectors, it is possible to manipulate the molten polymer in the cavity and generate a flow through the weld surface. The dynamic packing achieved using GAPP allows for the elimination of weld lines in the core layer of the molded part, significantly increasing its mechanical performance. For a 35% glass fiber reinforced polypropylene, an increase in tensile strength and stiffness of 240% and 21.5%, respectively, can be observed in the defect region. GAPP can be implemented to solve weld line strength problems in all parts made of fiber-reinforced thermoplastics that require high mechanical performance, such as supports, brackets, cooling fans, pulleys, and other structural parts.

Practical and Simulative Investigation of the Influence of Surface Roughness on the Flow Path Length in the Injection Moulding Process
Prof. Dr.-Ing. Christian Hopmann, Moritz Mascher, M.Sc. RWTH, Christoph Zimmermann, M.Sc., March 2023

In this work, a practical and simulative study of the surface roughness of the injection mold cavity and the corresponding heat transfer between the plastic melt and the mold cavity was conducted. The work shows that slightly longer flow paths can be achieved through the rougher mold surface, which indicates to a lower heat transfer. However, the influence is small compared to other influences such as the used molding compound or the injection pressure. An analysis of the structural replica over the flow path shows a clear decrease in the structural height towards the end of the flow path, i.e. with decreasing pressure and lower melt temperature. To describe the influence of microstructures on the heat transfer using injection molding simulations accurately, a model calibration is used.








spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net